Multistage unidirectionally migrating canyons and the evolution of their trajectories in the canyon zone in the Baiyun Sag, northern South China Sea: Insights into canyon genesis

Author:

Fu Chao1ORCID,Yu Xinghe2,Li Shunli2,Shan Xin3ORCID,He Yulin4,Jin Lina5

Affiliation:

1. China University of Geosciences, School of Energy, Beijing 100083, China and Université de Rennes 1, Rennes Geosciences, Rennes 35000, France..

2. China University of Geosciences, School of Energy, Beijing 100083, China.(corresponding author); .

3. Ministry of Natural Resources, First Institute of Oceanography, Key Laboratory of Marine Geology and Metallogeny, Qingdao 266061, China..

4. Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 510760, China..

5. Nanjing University, Collaborative Innovation Center of South China Sea Studies, Nanjing, 210093, China..

Abstract

In deep-sea slope areas, canyons provide an ideal space to preserve sediments and provide a window to explore the deepwater deposition process, such as turbidity flow and contourite currents. We have evaluated results of the study of the northern continental slope of the South China Sea characterized by the presence of mostly straight canyons. After evaluating core samples and interpreting the corresponding seismic data, we static the sedimentary parameter and identified two types of canyons with different migrating trajectories: “convex downward curve-shaped” trajectories and “convex upward curve-shaped” trajectories. The convex downward curve-shaped canyon trajectory is distinguished by a lower layer of coarse-grained sediment and an upper layer of fine-grained sediment, whereas the convex upward curve-shaped canyon trajectory features a lower layer of fine-grained sediment and an upper layer of coarse-grained sediment. Combining the grain size of the core sample and the scale of the sedimentary structure, we restore the turbidity flow rates and the corresponding turbidity flow behaviors. Coarse-grained turbidity flows are characterized by lower vertical erosion rates and higher lateral abrasion rates, whereas fine-grained turbidity flows exhibit the opposite characteristics. Thus, the convex downward curve-shaped migration trajectory is mainly formed by coarse-grained turbidity flow erosion in the first stage (the late migration stage) and fine-grained turbidity flow deposition in the second stage (the vertical aggradation stage). In contrast, the convex upward curve-shaped trajectory forms through the opposite pattern of sedimentary evolution.

Funder

China Scholarship Council

National Natural Science Foundation of China

National 127 Project

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3