Prestack seismic inversion with structural constraints

Author:

Li Dong1ORCID,Peng Suping2ORCID,Zhang Rui3,Guo Yinling1,Lu Yongxu1ORCID,Cui Xiaoqin2

Affiliation:

1. China University of Mining and Technology (Beijing), State Key Lab of Coal Resources and Safe Mining, Beijing 100083, China and China University of Mining and Technology (Beijing), College of Geoscience and Surveying Engineering, Beijing 100083, China.(corresponding author); .

2. China University of Mining and Technology (Beijing), State Key Lab of Coal Resources and Safe Mining, Beijing 100083, China..

3. University of Louisiana at Lafayette, School of Geosciences, Lafayette, Louisiana 70503, USA..

Abstract

Prestack seismic inversion usually suffers from a lower signal-to-noise ratio, which could result in unstable inversion results. The conventional multitrace lateral constrained inversion blurs steeply dipping layers, whereas the simple structural constrained inversion is affected by noise. To solve this issue, an inversion method with multiple constraints is proposed, which include (1) a local smoothing operator is used to suppress the inversion anomalies caused by data noise, (2) a difference operator is used to protect the stratum boundary, and (3) a structural dipping constraint is used to enhance the characterization of the possible dipping stratum. The multiconstraint inversion (MCI) method suppresses the inversion anomalies caused by data noise without blurring the stratum boundary. The effects of different constraints in the inversion process and the influence of noise on the inversion results are analyzed. In MCI, the regularization coefficient of each constraint operator is dynamically changed, thereby controlling the significance of each regularization term in the inversion. The proposed algorithm is tested on synthetic and field data, which demonstrate its effectiveness and improved accuracy on the inversion results.

Funder

111 Project

National Key RD Program of China

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3