Evolution and morphology of rafted blocks in an ancient deepwater mass-transport complex (Exmouth Plateau, offshore North West Australia)

Author:

Eruteya Ovie Emmanuel1ORCID,Niyazi Yakufu2,Omosanya Kamaldeen Olakunle3ORCID,Ierodiaconou Daniel2,Moscariello Andrea1ORCID

Affiliation:

1. University of Geneva, Geo-Energy/Reservoir Geology and Basin Analysis Group, Department of Earth Sciences, Geneva 1205, Switzerland.(corresponding author); .

2. Deakin University, School of Life and Environmental Sciences, Centre for Integrative Ecology, Warrnambool, Victoria 3280, Australia..

3. OASISGEOKONSULT, Trondheim 7052, Norway..

Abstract

Submarine mass wasting plays a fundamental role in transporting substantial volumes of sediments basinward including gigantic slide blocks. However, the understanding of processes involved in block generation and their associated deformation until flow arrest remains limited, especially in data-starved deepwater settings. Here, 2D and 3D seismic reflection data from the Exmouth Plateau, offshore North West Australia are used to investigate the architecture of large blocks preserved within an ancient mass-transport complex (MTC) and their interaction with the basal shear surface (BSS). The evolution of the investigated MTC (MTC-BDF) is related to instability along the slope and flanks of an underlying bifurcative Miocene canyon. The MTC-BDF spans approximately 75 × 35 km containing at least 32 well-imaged blocks (within the 3D seismic coverage) encapsulated in a well-deformed debrite background. These carbonate blocks interpreted as rafted blocks have lengths ranging from 0.48 to 3.40 km with thicknesses reaching up to 165 m. Interestingly, the blocks are more abundant in a region characterized by moderate- to high-amplitude debrites. Erosional morphologies encompassing a unique groove and other circular- to irregularly shaped depressions mapped along the BSS provide evidence for the erosive nature of the flow. The origin of the groove is related to transported blocks gouging the BSS. Importantly, intrablock deformations are recorded within these blocks as fault and fold systems. This suggests a complex flow regime within MTC-BDF, with the deformations arising either during block transportation or possibly upon arrest of the failed mass while interacting with bathymetric elements. Our findings suggest that inherent deformations within these blocks may serve as high-permeability conduits with implications for deepwater drilling operations within this segment of the Exmouth Plateau and elsewhere in other hydrocarbon-rich deepwater settings.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3