Effective and efficient approaches for calculating seismic ray velocity and attenuation in viscoelastic anisotropic media

Author:

Wu Jianlu1ORCID,Zhou Bing1ORCID,Li Xingwang2ORCID,Bouzidi Youcef1ORCID

Affiliation:

1. Khalifa University of Science and Technology, Department of Earth Science, Abu Dhabi 127788, UAE.(corresponding author); .

2. Chang’an University, School of Geology Engineering and Geomatics, Xi’an 710054, China..

Abstract

In viscoelastic anisotropic media, the elastic moduli, slowness vector, phase, and ray velocity are all complex-valued quantities in the frequency domain. Solving the complex eikonal equation becomes computationally complex and time-consuming. We have developed two approximate methods to effectively calculate the ray velocity vector, attenuation, and quality factor in viscoelastic transversely isotropic media with a vertical symmetry axis (VTI) and in orthorhombic (ORT) anisotropy. The first method is based on the perturbation theory (PER) under the assumption of a homogeneous complex ray vector, which is obtained by applying the elastic background and viscoelastic perturbations to the real and imaginary components of the modulus tensor, respectively. The perturbations of the slowness vectors of the three wave modes (qP, qSV, and qSH) are determined through the vanishing Hamiltonian function. The second method is derived by applying a real slowness direction (RSD) to the inhomogeneous complex slowness vector and then approximately calculating the complex ray velocity vector with the condition of the homogeneous complex vector. The numerical results verify that the two approaches can produce accurate ray velocity vector, attenuation, and quality factors of the qP-wave in viscoelastic VTI and ORT media. The RSD method can yield high accuracies of ray velocity for the qSV- and qSH-wave in viscoelastic VTI models even at triplication of the qSV wavefronts, as well as qS1 and qS2 in a weak ORT medium ([Formula: see text] > 20), except for near the cusp of the qS1 wavefronts (errors approximately 6%) where the PER has more than 10% error.

Funder

Khalifa University of Science, Technology and Research

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3