Multiscale nonlinear inversion of gravity data for depth-to-basement estimation via coupled stochastic-deterministic optimization

Author:

Jamasb Ali1ORCID,Motavalli-Anbaran Seyed-Hani1ORCID,Entezar-Saadat Vahid1ORCID,Zeyen Hermann2

Affiliation:

1. University of Tehran, Institute of Geophysics, Tehran 14359-44411, Iran.(corresponding author); .

2. Université Paris-Saclay, UMR 4818 GEOPS, CNRS, bât. 504, 91405 Orsay, France..

Abstract

We have developed a multiscale approach for solving 2D and 3D nonlinear inverse problems of gravity data in estimating the basement topography. The inversion is carried out in two stages in which the long-wavelength features of the basement are first estimated from smoothed gravity data via a stochastic optimization algorithm. The solution of this stage is used as the starting model for a deterministic optimization algorithm to reconstruct the short-wavelength features from the full-spectrum gravity data. The forward problem is capable of handling lateral and vertical variations in the density of sediments. Two cases are considered regarding prior knowledge about the density: (1) The density contrast between sediments at the surface and the underlying basement and its vertical variations are a priori known, and (2) only the density contrast at the surface is known with its vertical gradient to be recovered in the inversion. In the former case, the unknowns of the problem are the depths, whereas in the latter case, they are the depths and density gradients defined individually for each prism. Therefore, the inverse problem is ill-posed and has many local minima. The stochastic optimization algorithm uses a random initial model and estimates a coarse model of the basement topography. By repeating the stochastic inversion, an ensemble of solutions is formed defining an equivalent domain in the model space supposed to be within the neighborhood of the global minimum of which several starting solutions are extracted for the secondary deterministic inversion. The presented methodology has been tested successfully in converging to the global minima in 2D and 3D cases with 50 and 2352 total number of prisms, respectively. Finally, the inversion algorithm is used to calculate the thickness of the sediments in the South Caspian Basin using the EIGEN-6c4 global gravity model.

Funder

University of Tehran

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3