PS energy imaging condition for microseismic data — Part 2: Sensitivity analysis in 3D anisotropic media

Author:

Oren Can1ORCID,Shragge Jeffrey1ORCID

Affiliation:

1. Colorado School of Mines, Center for Wave Phenomena, Golden, Colorado 80401-1868, USA.(corresponding author); .

Abstract

In microseismic monitoring, obtaining reliable information about event properties, such as the location, origin time, and moment-tensor components, is critical for evaluating the success of fluid-injection programs. Elastic wavefield-based migration approaches can robustly image microseismic sources by extrapolating data through an earth model and evaluating an imaging condition. The success of these imaging methods, though, primarily depends on the elastic model’s accuracy. The previously developed extended PS energy imaging condition can provide valuable information about the accuracy of the elastic model parameters including vertical P- and S-wave velocities as well as anisotropy coefficients. Using the SEG advanced modeling Barrett Unconventional model, we have assessed the influence of errors in the anisotropy parameters by conducting a sensitivity analysis in three types of 3D models: transversely isotropic with a vertical symmetry axis, transversely isotropic with a horizontal symmetry axis, and orthorhombic media. Our analysis on zero-lag and extended PS energy images computed with perturbed anisotropy models shows that event images exhibit different moveout patterns of misfocused energy with respect to the distorted Thomsen parameters [Formula: see text] and [Formula: see text]; however, for this model, the [Formula: see text] parameters have almost no influence on images regardless of the applied perturbations, which are reflected in the minimal traveltime differences in the data. The dependence of microseismic source images on these parameters provides essential insights into anisotropic model accuracy, and it suggests that misfocused energy on extended image gathers may be used as a criterion for updating earth models through anisotropic elastic image-domain inversion.

Funder

Sponsors of the CWP Research Consortium

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3