Seismic imaging using an e-vib — A case study analyzing the signal properties of a seismic vibrator driven by electric linear synchronous motors

Author:

Brodic Bojan1ORCID,Ras Paul2,de Kunder Richard3,Drijkoningen Guy4ORCID,Malehmir Alireza1ORCID

Affiliation:

1. Uppsala University, Department of Earth Sciences, Uppsala 75236, Sweden.(corresponding author); .

2. Geophysical Consultant, 2333 Leiden, Netherlands..

3. Seismic Mechatronics, 5507 Veldhoven, Netherlands..

4. Seismic Mechatronics, 5507 Veldhoven, Netherlands and Delft University of Technology, Geotechnology Department, Delft 2628 CN, The Netherlands..

Abstract

Seismic imaging characteristics of a prototype electrically driven, linear synchronous motor-based, vertical-force seismic vibrator (“e-vib”) were evaluated at a site in the Netherlands. The system weighs 1.65 t and excites seismic signals with a peak force of 6.7 kN. Data were recorded along two collocated geophone-based nodal and landstreamer microelectromechanical system - MEMS-based sensor 2D seismic profiles. To obtain a broad bandwidth data set, the e-vib operated with a 1–200 Hz linear sweep. Shot gathers of the merged nodal-landstreamer data set indicated good-quality seismic data of a broadband nature. The processed merged data set demonstrates high-resolution reflections of the stratigraphic members from approximately 200 m to 2 km, with visible reflections as deep as 2.5–2.9 km. As a reference, we also processed a legacy 3D microspread data set acquired at the same site with a magnitude stronger (14.1 t, 67.5 kN) hydraulic vibrator. Comparison of our nodal-landstreamer seismic section versus 2D slices extracted from the processed microspread seismic volume suggested similar signal penetration depth and the same key marker horizons seen in both. Analysis of the reaction mass and base-plate accelerometer signals recorded with the e-vib source operating on grass and on asphalt surfaces indicates that the e-vib has low total harmonic distortion. The results obtained indicate that, although relatively small, the e-vib is capable of generating high-quality broadband seismic data.

Funder

European Union Horizon 2020

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3