Identifying reflector azimuth from borehole multicomponent cross-dipole acoustic measurement

Author:

Li Chao1ORCID,Chen Hao1ORCID,He Xiao1ORCID,Wang Xiuming1ORCID

Affiliation:

1. Institute of Acoustics, Chinese Academy of Sciences, State Key Laboratory of Acoustics, Beijing 100190, China and Beijing Engineering and Technology Research Center for Deep Drilling Exploration and Measurement, Beijing 100190, China.(corresponding author).

Abstract

The borehole dipole shear-wave reflection imaging method has great potential in heterogeneous reservoir explorations because of its deep investigation depth and relatively large reflection amplitude. However, the generally used shear horizontal (SH) reflection approach can only indicate the reflector strike and has an inherent defect in azimuth ambiguity. We have developed a multicomponent cross-dipole array acoustic measurement with four azimuthally distributed receiver arrays and a method using reflected dipole P-waves to eliminate the azimuth ambiguity caused by the SH reflection. The recorded data include cross-dipole waves with four components and two combined dipole-monopole waves that stack the data of the four azimuthally distributed receivers induced by each dipole source. A theoretical analysis indicates that the dipole compressional reflection is sensitive to the reflector azimuth. Therefore, the cross-dipole waves are first used to determine the reflective interface strike with the SH reflection. The compressional reflections obtained from the cross-dipole data and the combined dipole-monopole data are then processed to identify the correct azimuth. The effectiveness and accuracy of the method are validated via synthetic and field data examples in a soft formation. Our method may potentially solve the azimuth ambiguity problem in borehole acoustic reflection imaging and fully use cross-dipole acoustic measurements.

Funder

National Natural Science Foundation of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3