Assessing model uncertainty for the scaling function inversion of potential fields

Author:

Chauhan Mahak Singh1ORCID,Pierri Ivano2ORCID,Sen Mrinal K.3,Fedi Maurizio2ORCID

Affiliation:

1. Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania-Osservatorio Etneo, Piazza Roma 2, 95123 Catania, Italy..

2. Università degli Studi di Napoli Federico II, Dipartimento di Scienze della Terra dell’Ambiente e delle Risorse, Via Cinthia, 21, Napoli 80126, Italy.(corresponding author); .

3. The University of Texas at Austin, Institute for Geophysics, Austin, Texas 78759, USA..

Abstract

We have used the very fast simulated annealing algorithm to invert the scaling function along selected ridges, lying in a vertical section formed by upward continuing gravity data to a set of altitudes. The scaling function is formed by the ratio of the field derivative by the field itself, and it is evaluated along the lines formed by the zeros of the horizontal field derivative at a set of altitudes. We also use the same algorithm to invert gravity anomalies only at the measurement altitude. Our goal is to analyze the different models obtained through the two different inversions and to evaluate the relative uncertainties. One main difference is that the scaling function inversion is independent of density and the unknowns are the geometric parameters of the source. The gravity data are instead inverted for the source geometry and the density simultaneously. A priori information used for both the inversions is that the source has a known depth to the top. We examine the results over the synthetic examples of a salt dome structure generated by Talwani’s approach and real gravity data sets over the Mors salt dome (Denmark) and the Decorah Basin (USA). For all of these cases, the scaling function inversion yields models with better sensitivity to specific features of the sources, such as the tilt of the body, and reduced uncertainty. Finally, we analyze the density, which is one of the unknowns for the gravity inversion, and it is estimated from the geometric model for the scaling function inversion. The histograms over the density estimated at many iterations indicate a very concentrated distribution for the scaling function, whereas the density contrast retrieved by the gravity inversion, according to the fundamental ambiguity density/volume, is widely dispersed, making it difficult to assess its best estimate.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3