Leaky waveguides in hydrocarbon reservoirs and their implications for oil banks detection

Author:

Felix Servin Jesus Manuel1ORCID,Deffenbaugh Max2

Affiliation:

1. Saudi Aramco, EXPEC Advanced Research Center, Dhahran 31311, Saudi Arabia. (corresponding author)

2. Aramco Americas, Houston, Texas 77084, USA.

Abstract

The presence of naturally occurring subsurface waveguides for electromagnetic (EM) waves has been previously documented. In particular, the mining industry recognized that a coal seam bounded by layers of conductive rock acts as a leaky waveguide. Consequently, the attenuation constant and phase shift of EM signals propagating through the coal layer are modulated by the thickness of the coal and the EM properties of the three layers forming the leaky waveguide. The radio imaging method was developed based on this discovery to characterize coal deposits. Recent studies have determined that guided waves can provide useful information about the subsurface. Structures with similar dimensions and EM properties are found in oil fields in the form of layers of evaporite (e.g., anhydrite) bounded by hydrocarbon reservoirs. To the best of our knowledge, the feasibility of exploiting such structures to characterize the interwell region has not been investigated extensively. We have conducted a theoretical analysis and 3D numerical simulations in the time and frequency domains to demonstrate that layered structures in oil fields can act as leaky waveguides and efficiently guide EM waves. Our results suggest that such structures substantially enhance the propagation of megahertz EM signals. Among multiple parameters evaluated, the conductivity of the layers has the most significant effect on signal attenuation, and thus its range of propagation. We estimated that EM signals of approximately 10 MHz can propagate several hundreds of meters through a layer of anhydrite in the presence of conductive bounding reservoirs. The received signals are not only affected by the properties of the anhydrite layer, but also by the properties of the bounding reservoirs, conferring sensitivity to changes in reservoir saturation. We conclude that this approach could be further developed to infer fluid saturation and especially to identify the presence of oil banks in water-flooded hydrocarbon reservoirs.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3