Automatic fault detection on seismic images using a multiscale attention convolutional neural network

Author:

Gao Kai1ORCID,Huang Lianjie1ORCID,Zheng Yingcai2,Lin Rongrong2ORCID,Hu Hao2,Cladohous Trenton3

Affiliation:

1. Los Alamos National Laboratory, Geophysics Group, Los Alamos, New Mexico 87545, USA.(corresponding author); .

2. University of Houston, Department of Earth and Atmospheric Sciences, Houston, Texas 77204, USA..

3. Cyrq Energy Inc., Seattle, Washington 98103, USA..

Abstract

High-fidelity fault detection on seismic images is one of the most important and challenging topics in the field of automatic seismic interpretation. Conventional hand-picking-based and semi-human-intervened fault-detection approaches are being replaced by fully automatic methods thanks to the development of machine learning. We have developed a novel multiscale attention convolutional neural network (MACNN) to improve machine-learning-based automatic end-to-end fault detection on seismic images. The most important characteristics of our MACNN fault-detection method are that it uses a multiscale spatial-channel attention mechanism to merge and refine encoder feature maps of different spatial resolutions. The new architecture enables our MACNN to more effectively learn and exploit contextual information embedded in the encoder feature maps. We determine through several synthetic data and field data examples that our MACNN tends to produce higher resolution, higher fidelity fault maps from complex seismic images compared to those of the conventional fault-detection convolutional neural network, thus leading to improved geologic fidelity and interpretability of detected faults.

Funder

U.S. Department of Energy

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3