Novel Method for Detecting Weak AE Signals Based on the Similarity of Time-Frequency Spectra

Author:

Yang Wencheng12,Li Xiao123,Wang Yibo34,Zheng Yue3,Guo Peng123

Affiliation:

1. Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China..

2. Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.

3. University of Chinese Academy of Sciences, Beijing, China.Beijing, China..

4. Key Laboratory of Petroleum Resource Research, Chinese Academy of Science.

Abstract

As a key monitoring method, the acoustic emission (AE) technique has played a critical role in characterizing the fracturing process of laboratory rock mechanics experiments. However, this method is limited by low signal-to-noise ratio (SNR) because of a large amount of noise in the measurement and environment and inaccurate AE location. Furthermore, it is difficult to distinguish two or more hits because their arrival times are very close when AE signals are mixed with the strong background noise. Thus, we propose a new method for detecting weak AE signals using the mathematical morphology character correlation of the time-frequency spectrum. The character in all hits of an AE event can be extracted from time-frequency spectra based on the theory of mathematical morphology. Through synthetic and real data experiments, we determined that this method accurately identifies weak AE signals. Compared with conventional methods, the proposed approach can detect AE signals with a lower SNR.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3