An unsupervised deep-learning method for porosity estimation based on poststack seismic data

Author:

Feng Runhai1ORCID,Mejer Hansen Thomas2,Grana Dario3ORCID,Balling Niels2

Affiliation:

1. Delft University of Technology, Department of Geoscience and Engineering, Delft 2628CN, The Netherlands(corresponding author).

2. Aarhus University, Department of Geoscience, Aarhus 8000, Denmark..

3. University of Wyoming, Department of Geology and Geophysics, Laramie, Wyoming 82071, USA..

Abstract

We propose to invert reservoir porosity from poststack seismic data using an innovative approach based on deep-learning methods. We develop an unsupervised approach to circumvent the requirement of large volumes of labeled data sets for a conventional learning process. We apply convolutional neural networks (CNN) on seismic data to predict the relative porosity that is to be added to a low-frequency prior component. We then apply a forward model to synthesize seismic data based on a source wavelet and an acoustic impedance converted from the network-determined porosity. The parameters in the CNN are iteratively updated to minimize the error between recorded and simulated seismic data. We test the capability of our deep-learning approach to estimate reservoir porosity using a synthetic rock-physics model with two different signal-to-noise ratios. We also apply the proposed method to a real case study of seismic data acquired for hydrocarbon exploration of clastic reservoirs in the Vienna Basin. Instead of randomly assigning neural parameters, we use pretrained weights and biases at a previous location as initialization values for the next location, to preserve the geologically lateral continuity of the layers’ physical properties. As shown by these analyses, the unsupervised CNN-based scheme provides more or equally accurate results than standard methods for porosity estimation from seismically inverted acoustic impedance, which makes it a promising tool in seismic reservoir characterization with less user intervention.

Funder

Det Frie Forskningsråd

Innovationsfonden

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3