A numerically exact nonreflecting boundary condition applied to the acoustic Helmholtz equation

Author:

Mulder Wim A.1ORCID

Affiliation:

1. Shell Global Solutions International B.V., Amsterdam, The Netherlands and Delft University of Technology, Faculty of Civil Engineering and Geosciences, Department of Geoscience and Engineering, Delft, The Netherlands.(corresponding author).

Abstract

When modeling wave propagation, truncation of the computational domain to a manageable size requires nonreflecting boundaries. To construct such a boundary condition on one side of a rectangular domain for a finite-difference discretization of the acoustic wave equation in the frequency domain, the domain is extended on that one side to infinity. Constant extrapolation in the direction perpendicular to the boundary provides the material properties in the exterior. Domain decomposition can split the enlarged domain into the original one and its exterior. Because the boundary-value problem for the latter is translation-invariant, the boundary Green functions obey a quadratic matrix equation. Selection of the solvent that corresponds to the outgoing waves provides the input for the remaining problem in the interior. The result is a numerically exact nonreflecting boundary condition on one side of the domain. When two nonreflecting sides have a common corner, the translation invariance is lost. Treating each side independently in combination with a classic absorbing condition in the other direction restores the translation invariance and enables application of the method at the expense of numerical exactness. Solving the quadratic matrix equation with Newton’s method turns out to be more costly than solving the Helmholtz equation and may select unwanted incoming waves. A proposed direct method has a much lower cost and selects the correct branch. A test on a 2D acoustic marine seismic problem with a free surface at the top, a classic second-order Higdon condition at the bottom, and numerically exact boundaries at the two lateral sides demonstrates the capability of the method. Numerically exact boundaries on each side, each computed independently with a free-surface or Higdon condition, provide even better results.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3