On the spectral changes of seismic wave energy by a partially saturated crack due to the hysteresis of liquid bridges phenomenon

Author:

Rozhko Alexander Y.1ORCID

Affiliation:

1. Equinor ASA, Forusbeen 50, 4035 Stavanger, Norway and University of Stavanger, Department of Energy Resources, Stavanger, Norway.(corresponding author).

Abstract

Low-frequency shadows are frequently interpreted as attenuation phenomena due to partial saturation with free gas. However, several researchers have argued that shadows are not necessarily a simple attenuation phenomenon because low-frequency energy must have been added or amplified by some physical or numerical process. Attenuation alone should attenuate higher frequencies, not boost lower frequencies. The physical or numerical effects explaining this phenomenon are still debatable in the literature. To better understand the elastic wave energy’s spectral changes in partially saturated rock, we have considered the hysteresis of liquid bridges phenomena inside the crack. We determine that liquid bridges’ hysteresis leads to the nonlinear energy exchange between frequencies, explaining the wave energy boost at lower frequencies. We find that the energy exchange between different frequencies depends on the wave amplitude and the seismic wave spectrum. The low-frequency energy boost is stronger for a continuous spectrum of seismic waves, smaller for the discrete spectrum, and zero for the monochromatic spectrum of seismic waves. In addition, we find that at seismic frequencies, the attenuation 1/ Q-factor due to the friction of the contact line can be much larger than the attenuation due to viscous fluid flow inside the partially saturated crack. Our model depends on the wave amplitude and weakly depends on the wave frequency. The suggested model can help interpret the low-frequency shadows, bright spots, and attenuation anomalies frequently observed around hydrocarbon fields.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3