Denoising for full-waveform inversion with expanded prediction-error filters

Author:

Bader Milad1ORCID,Clapp Robert G.1,Biondi Biondo1

Affiliation:

1. Stanford University, Department of Geophysics, 397 Panama Mall, Stanford, California 94305, USA.(corresponding author); .

Abstract

Low-frequency data of less than 5 Hz are essential to the convergence of full-waveform inversion (FWI) toward a useful solution. They help to build the velocity model low wavenumbers and reduce the risk of cycle skipping. In marine environments, low-frequency data are characterized by a low signal-to-noise ratio (S/N) and can lead to erroneous models when inverted, especially if the noise contains coherent components. Often, field data are high-pass filtered before any processing step, sacrificing weak but essential signal for FWI. We have denoised the low-frequency data using prediction-error filters that we estimate from a high-frequency component with a high S/N. The constructed filter captures the multidimensional spectrum of the high-frequency signal. We expand the filter’s axes in the time-space domain to compress its spectrum toward the low frequencies and wavenumbers. The expanded filter becomes a predictor of the target low-frequency signal, and we incorporate it in a minimization scheme to attenuate noise. To account for data nonstationarity while retaining the simplicity of stationary filters, we divide the data into nonoverlapping patches and linearly interpolate stationary filters at each data sample. We apply our method to synthetic stationary and nonstationary data, and we find that it improves the FWI results initialized at 2.5 Hz using the Marmousi model. We also demonstrate that the denoising attenuates nonstationary shear energy recorded by the vertical component of ocean-bottom nodes.

Funder

Stanford Exploration Project affiliate companies.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference43 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3