Bidirectional recurrent neural networks for seismic event detection

Author:

Birnie Claire1ORCID,Hansteen Fredrik23

Affiliation:

1. Formerly Equinor ASA; presently King Abdullah University of Science and Technology, Thuwal, Saudi Arabia. (corresponding author)

2. Formerly Equinor ASA; presently King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.

3. Equinor ASA, Bergen, Norway.

Abstract

Real-time accurate passive seismic event detection is a critical safety measure across a range of monitoring applications, from reservoir stability to carbon storage to volcanic tremor detection. The most common detection procedure remains the short-term average to long-term average (STA/LTA) trigger developed in the 1970s, in part due to its easy implementation and real-time processing capability. However, it has several well-documented limitations, such as requiring a signal-to-noise ratio greater than one and being highly sensitive to trigger parameters. Although numerous alternatives have been proposed, they often are tailored to a specific monitoring setting and therefore cannot be widely applied, or they are too computationally expensive and therefore cannot be run in real time. This work introduces a deep learning approach to event detection that is an alternative to the STA/LTA trigger. A bidirectional, long short-term memory, neural network (NN) is trained solely on synthetic traces. Evaluated on synthetic and field data, the NN approach significantly outperforms the STA/LTA trigger on the number of correctly detected arrivals as well as on reducing the number of falsely detected events. Its applicability is proven with 600 traces processed in real time on a single processing unit.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference49 articles.

1. Abadi, M., P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, and M. Kudlur, 2016, TensorFlow: A system for large-scale machine learning: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), 265–283.

2. Automatic earthquake recognition and timing from single traces

3. Automated fault detection without seismic processing

4. ObsPy: A Python Toolbox for Seismology

5. Detecting microseismic events in downhole distributed acoustic sensing data using convolutional neural networks

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3