Bayesian Hamiltonian Monte Carlo method for the estimation of pyrolysis parameter S1

Author:

Luo Kun1ORCID,Zong Zhaoyun1ORCID,Yin Xingyao1ORCID,Cao Hong2,Lu Minghui3

Affiliation:

1. China University of Petroleum (East China), Department of Geophysics, Qingdao 266555, China.(corresponding author); .

2. PetroChina, Research Institute of Petroleum Exploration and Development, Beijing 100083, China..

3. PetroChina, Exploration and Development Research Institute, Department of Geophysics, Beijing 100083, China..

Abstract

A Gaussian mixture Hamiltonian Monte Carlo (HMC) Bayesian method has been developed for the inversion of petrophysical parameters such as pyrolysis parameter S1, which is driven by a statistical shale rock-physics model. Pyrolysis parameter S1 can be used to indicate the content of free or adsorbed hydrocarbons in source rock, and it is an important indicator to evaluate the production of shale oil reservoirs. However, most studies on pyrolysis parameters are based on pyrolysis experiments and there is no relevant study to inverse pyrolysis parameter S1 from seismic data. In addition, compared to the total organic carbon content, pyrolysis S1 is more accurate for evaluating gas and oil in shale. In particular, high values of pyrolysis S1 can directly indicate the content of shale oil. We have developed a strategy for assessing shale oil sweet spots through estimating pyrolysis S1 and other petrophysical parameters. Based on the Gaussian mixture assumptions for the prior distribution of the model, we build a joint distribution to link the pyrolysis parameter S1 with elastic attributes, and then we derive a formulation to inverse S1 with the Bayesian model. Due to the components of the Gaussian mixture, the HMC method has been used to sample the posterior distribution. Our study finds that the HMC method for sampling can improve the efficiency and allow a more robust quantification of the uncertainty; also, application to real seismic data sets indicates that the delineation of sweet spots is more accurate combined with pyrolysis S1.

Funder

National Natural Science Foundation of China

Distinguished Middle-Aged and Young Scientist Encourage and Reward Foundation of Shandong Province

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3