Convolutional neural networks applied to the interpretation of lineaments in aeromagnetic data

Author:

Naprstek Tomas1ORCID,Smith Richard S.2ORCID

Affiliation:

1. National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada. (corresponding author)

2. Laurentian University, Sudbury, Ontario P3E 2C6, Canada.

Abstract

Parameter estimation in aeromagnetics is an important tool for geologic interpretation. Due to aeromagnetic data being highly prevalent around the world, it can often be used to assist in understanding the geology of an area as a whole or for locating potential areas of further investigation for mineral exploration. Methods that automatically provide information such as the location and depth to the source of anomalies are useful to the interpretation, particularly in areas where a large number of anomalies exist. Unfortunately, many current methods rely on high-order derivatives and are therefore susceptible to noise in the data. Convolutional neural networks (CNNs) are a subset of machine-learning methods that are well-suited to image processing tasks, and they have been shown to be effective at interpreting other geophysical data, such as seismic sections. Following several similar successful approaches, we have developed a CNN methodology for estimating the location and depth of lineament-type anomalies in aeromagnetic maps. To train the CNN model, we used a synthetic aeromagnetic data modeler to vary the relevant physical parameters, and we developed a representative data set of approximately 1.4 million images. These were then used for training classification CNNs, with each class representing a small range of depth values. We first applied the model to a series of difficult synthetic data sets with varying amounts of noise, comparing the results against the tilt-depth method. We then applied the CNN model to a data set from northeastern Ontario, Canada, that contained a dike with known depth that was correctly estimated. This method is shown to be robust to noise, and it can easily be applied to new data sets using the trained model, which has been made publicly available.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference71 articles.

1. Abadi, M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, and S. Ghemawat, 2015, TensorFlow: Large-scale machine learning on heterogeneous systems, software available from tensorflow.org, accessed 5 September 2019.

2. Aghaee Rad, M. A., 2019, Machine learning of lineaments from magnetic, gravity and elevation maps: M.S. thesis, University of British Columbia.

3. Regional variation in paleomagnetic polarity of the Matachewan dyke swarm related to the Kapuskasing Structural Zone, Ontario

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3