Nonstationary local time-frequency transform

Author:

Chen Yangkang1ORCID

Affiliation:

1. Zhejiang University, Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, School of Earth Sciences, Hangzhou 310027, China.(corresponding author).

Abstract

Time-frequency analysis is a fundamental approach to many seismic problems. Time-frequency decomposition transforms input seismic data from the time domain to the time-frequency domain, offering a new dimension to probe the hidden information inside the data. Considering the nonstationary nature of seismic data, time-frequency spectra can be obtained by applying a local time-frequency transform (LTFT) method that matches the input data by fitting the Fourier basis with nonstationary Fourier coefficients in the shaping regularization framework. The key part of LTFT is the temporal smoother with a fixed smoothing radius that guarantees the stability of the nonstationary least-squares fitting. We have developed a new LTFT method to handle the nonstationarity in all time, frequency, and space ( x and y) directions of the input seismic data by extending fixed-radius temporal smoothing to nonstationary smoothing with a variable radius in all physical dimensions. The resulting time-frequency transform is referred to as the nonstationary LTFT method, which could significantly increase the resolution and antinoise ability of time-frequency transformation. There are two meanings of nonstationarity, i.e., coping with the nonstationarity in the data by LTFT and dealing with the nonstationarity in the model by nonstationary smoothing. We evaluate the performance of our nonstationary LTFT method in several standard seismic applications via synthetic and field data sets, e.g., arrival picking, quality factor estimation, low-frequency shadow detection, channel detection, and multicomponent data registration, and we benchmark the results with the traditional stationary LTFT method.

Funder

Starting fund from Zhejiang University

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3