Elastic FWI for orthorhombic media with lithologic constraints applied via machine learning

Author:

Singh Sagar1ORCID,Tsvankin Ilya1,Zabihi Naeini Ehsan2ORCID

Affiliation:

1. Colorado School of Mines, Center for Wave Phenomena, Golden, Colorado 80401, USA.(corresponding author); .

2. Earth Science Analytics, New Malden, London KT3 5HF, UK..

Abstract

Full-waveform inversion (FWI) of 3D wide-azimuth data for elastic orthorhombic media suffers from parameter trade-offs which cannot be overcome without constraining the model-updating procedure. We present an FWI methodology that incorporates geologic constraints to reduce the inversion nonlinearity and increase the resolution of parameter estimation for orthorhombic models. These constraints are obtained from well logs, which can provide rock-physics relationships for different geologic facies. Because the locations of the available well logs are usually sparse, a supervised machine-learning (ML) algorithm (Support Vector Machine) is employed to account for lateral heterogeneity in building the lithologic constraints. The advantages of the facies-based FWI are demonstrated on the modified SEG-EAGE 3D overthrust model, which is made orthorhombic with the symmetry planes that coincide with the Cartesian coordinate planes. We employ a velocity-based parameterization, whose suitability for FWI was studied using the radiation-pattern analysis. Application of the facies-based constraints substantially increases the resolution of the P- and S-wave vertical velocities ([Formula: see text], [Formula: see text], and [Formula: see text]) and, therefore, of the depth scale of the model. Improvements are also observed for the P-wave horizontal and normal-moveout velocities ([Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text]) and the S-wave horizontal velocity [Formula: see text]. However, the velocity [Formula: see text] that depends on Tsvankin’s parameter [Formula: see text] defined in the horizontal plane is not well recovered from the surface data. On the whole, the developed algorithm achieves a much higher spatial resolution compared to unconstrained FWI, even in the absence of recorded frequencies below 2 Hz.

Funder

Center for Wave Phenomena

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3