Robust singular value decomposition filtering for low signal-to-noise ratio seismic data

Author:

Wang Chao1ORCID,Wang Yun2ORCID

Affiliation:

1. Chinese Academy of Sciences, Institute of Geochemistry, The State Key Laboratory of Ore Deposit Geochemistry, Guiyang 550081, China.(corresponding author).

2. China University of Geosciences, School of Geophysics and Information Technology, Beijing 100083, China..

Abstract

Reduced-rank filtering is a common method for attenuating noise in seismic data. Because conventional reduced-rank filtering distinguishes signals from noises only according to singular values, it performs poorly when the signal-to-noise ratio (S/N) is very low or when data contain high levels of isolate or coherent noise. Therefore, we have developed a novel and robust reduced-rank filtering method based on singular value decomposition in the time-space domain. In this method, noise is recognized and attenuated according to the characteristics of the singular values and the singular vectors. The left and right singular vectors corresponding to large singular values are selected first. Then, the right singular vectors are classified into different categories according to their curve characteristics, such as jump, pulse, and smooth. Each kind of right singular vector is related to a type of noise or seismic event, and it is corrected by using a different filtering technology, such as mean filtering, edge-preserving smoothing, or edge-preserving median filtering. The left singular vectors are also corrected by using the filtering methods based on frequency attributes such as main frequency and frequency bandwidth. To process seismic data containing a variety of events, local data are extracted along the local dip of the event. The optimal local dip is identified according to the singular values and singular vectors of the data matrices that are extracted along different trial directions. This new filtering method has been applied to synthetic and field seismic data, and its performance is compared with that of several conventional filtering methods. The results indicate that the new method is more robust for data with a low S/N, strong isolated noise, or coherent noise. The new method also overcomes the difficulties associated with selecting an optimal rank.

Funder

National Key Research and Development Project

National Natural Science Foundation of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3