Predictive geologic mapping from geophysical data using self-organizing maps: A case study from Baie Verte, Newfoundland, Canada

Author:

Carter-McAuslan Angela1,Farquharson Colin1ORCID

Affiliation:

1. Memorial University of Newfoundland, Department of Earth Sciences, St. John’s, Newfoundland and Labrador A1B 3X5, Canada.(corresponding author).

Abstract

Self-organizing maps (SOMs) are a type of unsupervised artificial neural networks clustering tool. SOMs are used to cluster large multivariate data sets. They can identify patterns and trends in the geophysical maps of an area and generate proxy geology maps, known as remote predictive mapping. We have applied SOMs to magnetic, radiometric, and gravity data sets compiled from multiple modern and legacy data sources over the Baie Verte Peninsula, Newfoundland, Canada. The regional and local geologic maps available for this area and knowledge from numerous geologic studies has enabled the accuracy of SOM-based predictive mapping to be assessed. Proxy geology maps generated by primary clustering directly from the SOMs and secondary clustering using a k-means approach reproduced many geologic units identified by previous traditional geologic mapping. Of the combinations of data sets tested, the combination of magnetic data, primary radiometric data and their ratios, and Bouguer gravity data gave the best results. We found that using reduced-to-the-pole residual intensity or using the analytic signal as the magnetic data were equally useful. The SOM process was unaffected by gaps in the coverage of some of the data sets. The SOM results could be used as input into k-means clustering because this method requires no gaps in the data. The subsequent k-means clustering resulted in more meaningful proxy geology maps than were created by the SOM alone. In regions where the geology is poorly known, these proxy maps can be useful in targeting where traditional, on-the-ground geologic mapping would be most beneficial, which can be especially useful in parts of the world where access is difficult and expensive.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3