Least-squares Gaussian beam migration in viscoacoustic media

Author:

Yue Yubo1ORCID,Liu Yujin2ORCID,Li Yaonan3,Shi Yunyan4

Affiliation:

1. R&D Center, Bureau of Geophysical Prospecting Inc., Zhuozhou 072751, China..

2. Beijing Research Center, Aramco Asia, Beijing 100102, China.(corresponding author).

3. China Academy of Railway Sciences, Infrastructure Inspection Research Institute, Beijing 100081, China..

4. Geophysical Research Institute, Bureau of Geophysical Prospecting Inc., Zhuozhou 072751, China..

Abstract

Because of amplitude decay and phase dispersion of seismic waves, conventional migrations are insufficient to produce satisfactory images using data observed in highly attenuative geologic environments. We have developed a least-squares Gaussian beam migration method for viscoacoustic data imaging, which can not only compensate for amplitude decay and phase dispersion caused by attenuation, but it can also improve image resolution and amplitude fidelity through linearized least-squares inversion. We represent the viscoacoustic Green’s function by a summation of Gaussian beams, in which an attenuation traveltime is incorporated to simulate or compensate for attenuation effects. Based on the beam representation of the Green’s function, we construct the viscoacoustic Born forward modeling and adjoint migration operators, which can be effectively evaluated by a time-domain approach based on a filter-bank technique. With the constructed operators, we formulate a least-squares migration scheme to iteratively solve for the optimal image. Numerical tests on synthetic and field data sets demonstrate that our method can effectively compensate for the attenuation effects and produce images with higher resolution and more balanced amplitudes than images from acoustic least-squares Gaussian beam migration.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3