Inversion of reflection times in three dimensions

Author:

Gjøystdal Håvar1,Ursin Bjørn1

Affiliation:

1. Geophysical Company of Norway A. S.

Abstract

When reflection data are available from a grid of crossing seismic lines, it is possible to construct normal incidence time maps from interpreted stacked sections and then apply three‐dimensional (3-D) ray‐tracing techniques following the normal‐incidence raypaths down to the various reflectors. The main disadvantage of this well‐known “time map migration” procedure is that interval velocities must be known a priori, and they must be estimated in advance by some approximate method. A technique is presented here which combines the above procedure with an inversion algorithm, providing direct calculations of interval velocities from the additional use of nonzero offset traveltime observations. A generalized linear inversion scheme is used, making possible a complete calculation of interval velocities and reflection interfaces, the latter represented by bicubic spline functions. To test the method in practice, we have applied it to (1) synthetic data generated from a constructed model, and (2) real data obtained from marine seismic sections. In the latter case, velocities and reflector depths obtained were compared to those obtained directly from a well log in the area. These results show a reasonably good resolution for layers that are not too deep relative to the shot/receiver offsets used. For deep and/or thin layers, the results are not satisfactory. This indicates the general limitation of seismic reflection data to resolve interval velocity, even in the presence of horizontally layered structure.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dimensionless Coordinate Transformation of 1D Basin Modeling Equation;Quantitative Analysis of Geopressure for Geoscientists and Engineers;2021-03-11

2. Basic Definitions;Quantitative Analysis of Geopressure for Geoscientists and Engineers;2021-03-11

3. Empirical Relations for Fluid (Brine, Oil, Gas) Properties;Quantitative Analysis of Geopressure for Geoscientists and Engineers;2021-03-11

4. Recent Advances in Geopressure Prediction and Detection Technology and the Road Ahead;Quantitative Analysis of Geopressure for Geoscientists and Engineers;2021-03-11

5. Guidelines for Best Practices;Quantitative Analysis of Geopressure for Geoscientists and Engineers;2021-03-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3