Nonlinear multiparameter optimization using genetic algorithms: Inversion of plane‐wave seismograms

Author:

Stoffa Paul L.1,Sen Mrinal K.2

Affiliation:

1. Institute for Geophysics and Department of Geological Sciences, The University of Texas at Austin, 8701 Mopac Blvd., Austin, TX 78759-8345

2. Institute for Geophysics, The University of Texas at Austin, 8701 Mopac Blvd., Austin, TX 78759-8345

Abstract

Seismic waveform inversion is one of many geophysical problems which can be identified as a nonlinear multiparameter optimization problem. Methods based on local linearization fail if the starting model is too far from the true model. We have investigated the applicability of “Genetic Algorithms” (GA) to the inversion of plane‐wave seismograms. Like simulated annealing, genetic algorithms use a random walk in model space and a transition probability rule to help guide their search. However, unlike a single simulated annealing run, the genetic algorithms search from a randomly chosen population of models (strings) and work with a binary coding of the model parameter set. Unlike a pure random search, such as in a “Monte Carlo” method, the search used in genetic algorithms is not directionless. Genetic algorithms essentially consist of three operations, selection, crossover, and mutation, which involve random number generation, string copies, and some partial string exchanges. The choice of the initial population, the probabilities of crossover and mutation are crucial for the practical implementation of the algorithm. We investigated the effects of these parameters in the inversion of plane‐wave seismograms in which a normalized crosscorrelation function was used as the objective or fitness function (E). We also introduce the concept of “update” probability to control the influence of past generations. The combination of a low value of mutation probability (∼0.01), a moderate value of the crossover probability (∼0.6) and a high value of update probability (∼0.9) are found to be optimal for the convergence of the algorithm. Further, we show that concepts from simulated annealing can be used effectively for the stretching of the fitness function which helps in the convergence of the algorithm. Thus, we propose to use exp (E/T) rather than E as the fitness function, where T (analogous to temperature in simulated annealing) is a properly chosen parameter which can change slowly with each generation. Also, by repeating the GA optimization procedure several times with different randomly chosen initial model populations, we derive “a very good subset” of models from the entire model space and calculate the a posteriori probability density σ(m) ∝ exp (E(m)/T). The σ(m) ’s are then used to calculate a “mean” model, which is found to be close to the true model.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 336 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3