Ultrasound-Assisted Extraction of Okra Mucilage: Rheological Properties of its Aqueous Solutions

Author:

Akcan Tolga1ORCID,Öncü Glaue Şelale1ORCID

Affiliation:

1. Dokuz Eylül University, Efes Vocational School, Food Processing Department

Abstract

Using chemical and physicochemical techniques, we extracted the mucilaginous component of okra (Abelmoschus esculentus L.) by the ultrasound-assisted extraction method, then evaluated the resulting polysaccharide extract's rheological properties. Our investigation encompassed examining the flow behavior of polysaccharides extracted under different okra to distilled water ratios (1:10 and 1:30) and various polysaccharide concentrations (1, 2, 3 and 4%, w/v) over a temperature range of 10°C to 80°C. Employing the power law model, we derived parameters and found that okra polysaccharides displayed non-Newtonian pseudoplastic flow characteristics. The flow behavior index ranged from 0.234 to 0.947, with the consistency coefficient ranging from 4.37 to 244.50 mPa.s. Increasing temperature resulted in a decrease in both the consistency coefficient (K) and flow behavior index (n), while concentration elevation led to higher consistency coefficient values. However, the flow behavior index did not exhibit consistent trends with concentration variations. Three statistical parameters; correlation coefficient (R2), root mean square error (RMSE) and chi-square (χ2) were used to evaluate the fit of the power law model to the experimental data. Our study further explored temperature’s impact on the apparent viscosities of okra polysaccharide samples and modeled the influence of temperature on the consistency index using the Arrhenius equation. Samples with solid-to-solvent ratios of 1:10 and 1:30 showed increasing activation energy with concentration rise, with the highest value recorded at 275.84 kJ/mol for the 1:10 ratio sample with a 4% concentration. In SEM images, okra polymers exhibit irregular, wavy, rough textured surface, and amorphous appearance. These findings hold promise for optimizing ultrasound extraction protocols and enhancing the industrial utilization of mucilages through their rheological properties.

Publisher

Akademik Gida

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3