Examples of compact Einstein four-manifolds with negative curvature

Author:

Fine Joel,Premoselli Bruno

Abstract

We give new examples of compact, negatively curved Einstein manifolds of dimension 4 4 . These are seemingly the first such examples which are not locally homogeneous. Our metrics are carried by a sequence of four-manifolds ( X k ) (X_k) previously considered by Gromov and Thurston (Pinching constants for hyperbolic manifolds, Invent. Math. 89 (1987), no. 1, 1–12). The construction begins with a certain sequence ( M k ) (M_k) of hyperbolic four-manifolds, each containing a totally geodesic surface Σ k \Sigma _k which is nullhomologous and whose normal injectivity radius tends to infinity with k k . For a fixed choice of natural number l l , we consider the l l -fold cover X k M k X_k \to M_k branched along Σ k \Sigma _k . We prove that for any choice of l l and all large enough k k (depending on l l ), X k X_k carries an Einstein metric of negative sectional curvature. The first step in the proof is to find an approximate Einstein metric on X k X_k , which is done by interpolating between a model Einstein metric near the branch locus and the pull-back of the hyperbolic metric from M k M_k . The second step in the proof is to perturb this to a genuine solution to Einstein’s equations, by a parameter dependent version of the inverse function theorem. The analysis relies on a delicate bootstrap procedure based on L 2 L^2 coercivity estimates.

Funder

European Research Council

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference37 articles.

1. Dehn filling and Einstein metrics in higher dimensions;Anderson, Michael T.;J. Differential Geom.,2006

2. Geometric aspects of the AdS/CFT correspondence;Anderson, Michael T.,2005

3. Équations du type Monge-Ampère sur les variétés kählériennes compactes;Aubin, Thierry;Bull. Sci. Math. (2),1978

4. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences];Aubin, Thierry,1982

5. Construction of Einstein metrics by generalized Dehn filling;Bamler, Richard H.;J. Eur. Math. Soc. (JEMS),2012

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Non-compact Einstein manifolds with symmetry;Journal of the American Mathematical Society;2023-02-28

2. On the impossibility of four-dimensional complex-hyperbolic Einstein Dehn filling;Proceedings of the American Mathematical Society;2022-08-12

3. Extended graph 4-manifolds, and Einstein metrics;Annales mathématiques du Québec;2022-02-03

4. Photon surfaces in less symmetric spacetimes;Physical Review D;2021-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3