A short basis of the Stickelberger ideal of a cyclotomic field

Author:

Bernard Olivier,Kučera Radan

Abstract

We exhibit an explicit short basis of the Stickelberger ideal of cyclotomic fields of any conductor m m , i.e., a basis containing only short elements. An element σ G m ε σ σ \sum _{\sigma \in G_m} \varepsilon _{\sigma }\sigma of the group ring Z [ G m ] \mathbb {Z}[G_{m}] , where G m G_m is the Galois group of the field, is said to be short if all of its coefficients ε σ \varepsilon _{\sigma } are 0 0  or  1 1 .

As a direct practical consequence, we deduce from this short basis an explicit upper bound on the relative class number that is valid for any conductor. This basis also has several concrete applications, in particular for the cryptanalysis of the Shortest Vector Problem on Ideal Lattices.

Funder

Horizon 2020

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,Computational Mathematics,Algebra and Number Theory

Reference16 articles.

1. A survey of the Hadamard maximal determinant problem;Browne, Patrick;Electron. J. Combin.,2021

2. Twisted-PHS: using the product formula to solve approx-SVP in ideal lattices;Bernard, Olivier,[2020] \copyright2020

3. Mildly short vectors in cyclotomic ideal lattices in quantum polynomial time;Cramer, Ronald;J. ACM,2021

4. On certain sums of fractional parts;Gandhi, J. M.;Arch. Math. (Basel),1974

5. On bases of odd and even universal ordinary distributions;Kučera, Radan;J. Number Theory,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3