On Darmon’s program for the generalized Fermat equation, II

Author:

Billerey Nicolas,Chen Imin,Dieulefait Luis,Freitas Nuno

Abstract

We obtain additional Diophantine applications of the methods surrounding Darmon’s program for the generalized Fermat equation developed in the first part of this series of papers. As a first application, we use a multi-Frey approach combining two Frey elliptic curves over totally real fields, a Frey hyperelliptic curve over  Q \mathbb {Q} due to Kraus, and ideas from the Darmon program to give a complete resolution of the generalized Fermat equation x 7 + y 7 = 3 z n \begin{equation*} x^7 + y^7 = 3 z^n \end{equation*} for all integers n 2 n \ge 2 . Moreover, we explain how the use of higher dimensional Frey abelian varieties allows a more efficient proof of this result due to additional structures that they afford, compared to using only Frey elliptic curves.

As a second application, we use some of these additional structures that Frey abelian varieties possess to show that a full resolution of the generalized Fermat equation x 7 + y 7 = z n x^7 + y^7 = z^n depends only on the Cartan case of Darmon’s big image conjecture. In the process, we solve the previous equation for solutions ( a , b , c ) (a,b,c) such that  a a and  b b satisfy certain 2 2 - or  7 7 -adic conditions and all n 2 n \ge 2 .

Funder

Agence Nationale de la Recherche

Publisher

American Mathematical Society (AMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3