Maximum curvature for curves in manifolds of sectional curvature at most zero or one

Author:

Andrews Ben,Xiong Changwei

Abstract

We prove a sharp lower bound for the maximum curvature of a closed curve in a complete, simply connected Riemannian manifold of sectional curvature at most zero or one. When the bound is attained, we get the rigidity result. The proof utilizes the maximum principle for a suitable two-point function. In the same spirit, we also obtain a lower bound for the maximum curvature of a curve in the same ambient manifolds which has the same endpoints with a fixed geodesic segment and has a prescribed contact angle. As a corollary, the latter result applies to a curve with free boundary in geodesic balls of Euclidean space and hemisphere.

Funder

Australian Research Council

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference17 articles.

1. Optimal isoperimetric inequalities;Almgren, F.;Indiana Univ. Math. J.,1986

2. Noncollapsing in mean-convex mean curvature flow;Andrews, Ben;Geom. Topol.,2012

3. Moduli of continuity, isoperimetric profiles, and multi-point estimates in geometric heat equations;Andrews, Ben,2015

4. Embedded constant mean curvature tori in the three-sphere;Andrews, Ben;J. Differential Geom.,2015

5. Embedded minimal tori in 𝑆³ and the Lawson conjecture;Brendle, Simon;Acta Math.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3