We show that if
K
K
is an L-space twisted torus knot
T
p
,
p
k
±
1
l
,
m
T^{l,m}_{p,pk \pm 1}
with
p
≥
2
p \ge 2
,
k
≥
1
k \ge 1
,
m
≥
1
m \ge 1
, and
1
≤
l
≤
p
−
1
1 \le l \le p-1
, then the fundamental group of the
3
3
-manifold obtained by
r
s
\frac {r}{s}
-surgery along
K
K
is not left-orderable whenever
r
s
≥
2
g
(
K
)
−
1
\frac {r}{s} \ge 2 g(K) -1
, where
g
(
K
)
g(K)
is the genus of
K
K
.