On extraordinary semisimple matrix 𝑁(𝑣) for anisotropic elastic materials

Author:

Ting T. C. T.

Abstract

The 6 × 6 6 \times 6 real matrix N ( v ) N\left ( v \right ) for anisotropic elastic materials under a two-dimensional steady-state motion with speed v v is extraordinary semisimple when N ( v ) N\left ( v \right ) has three identical complex eigenvalues p p and three independent associated eigenvectors. We show that such an N ( v ) N\left ( v \right ) exists when v 0 v \ne 0 . The eigenvalues are purely imaginary. The material can sustain a steady-state motion such as a moving line dislocation. Explicit expressions of the Barnett-Lothe tensors for v 0 v \ne 0 are presented. However, N ( v ) N\left ( v \right ) cannot be extraordinary semisimple for surface waves. When v = 0 v = 0 , N ( 0 ) N\left ( 0 \right ) can be extraordinary semisimple if the strain energy of the material is allowed to be positive semidefinite. Explicit expressions of the Barnett-Lothe tensors and Green’s functions for the infinite space and half-space are presented. An unusual phenomenon for the material with positive semidefinite strain energy considered here is that it can support an edge dislocation with zero stresses everywhere. In the special case when p = i p = i is a triple eigenvalue, this material is an un-pressurable material in the sense that it can change its (two-dimensional) volume with zero pressure. It is a counterpart of an incompressible material (whose strain energy is also positive semidefinite) that can support pressure with zero volume change.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics

Reference17 articles.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3