Oscillations in a delay-logistic equation
Author:
Abstract
Sufficient conditions are derived for all nonconstant nonnegative solutions of the equations of the form \[ d x ( t ) d t = x ( t ) { a − ∑ j = 1 n b j x ( t − τ j ) } \frac {{dx\left ( t \right )}}{{dt}} = x\left ( t \right )\left \{ {a - \sum \limits _{j = 1}^n {{b_j}x\left ( {t - {\tau _j}} \right )} } \right \} \] and \[ d x ( t ) d t = x ( t ) { a − b ∫ − ∞ t k ( t − s ) x ( s ) d s } \frac {{dx\left ( t \right )}}{{dt}} = x\left ( t \right )\left \{ {a - b\int _{ - \infty }^t {k\left ( {t - s} \right )x\left ( s \right )ds} } \right \} \] to be oscillatory about their respective positive steady states. The results are complementary to those in [15].
Publisher
American Mathematical Society (AMS)
Subject
Applied Mathematics
Link
http://www.ams.org/qam/1986-44-03/S0033-569X-1986-0860898-5/S0033-569X-1986-0860898-5.pdf
Reference44 articles.
1. On a two-lag differential delay equation;Braddock, R. D.;J. Austral. Math. Soc. Ser. B,1982
2. Existence of periodic solutions of autonomous functional differential equations;Chow, Shui Nee;J. Differential Equations,1974
3. Effect of delays on functional differential equations;Ruiz Claeyssen, Julio;J. Differential Equations,1976
4. A nonlinear differential-difference equation of growth;Cunningham, W. J.;Proc. Nat. Acad. Sci. U.S.A.,1954
Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Global stability and the Hopf bifurcation for some class of delay differential equation;Mathematical Methods in the Applied Sciences;2007-12-13
2. Linearized oscillation for non-linear systems of delay differential equations;Applied Mathematics and Computation;2003-09
3. Nonexistence of positive solutions for 2pth order integro-differential inequalities;Applied Mathematics Letters;1997-11
4. Positive solutions of integro-differential inequalities;Computers & Mathematics with Applications;1997-11
5. On the Nonexistence of Positive Solutions of Integro-Differential Inequalities;Rocky Mountain Journal of Mathematics;1996-12-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3