Special Vinberg cones, invariant admissible cubics and special real manifolds

Author:

Alekseevsky Dmitri,Marrani Alessio,Spiro Andrea

Abstract

By Vinberg theory any homogeneous convex cone V \mathscr {V} may be realised as the cone of positive Hermitian matrices in a T T -algebra of generalised matrices. The level hypersurfaces V q V \mathscr {V}_{q} \subset \mathscr {V} of homogeneous cubic polynomials q q with positive definite Hessian (symmetric) form g ( q ) Hess ( log ( q ) ) | T V q g(q) ≔- \operatorname {Hess}(\log (q))|_{T \mathscr {V}_q} are the special real manifolds. Such manifolds occur as scalar manifolds of the vector multiplets in N = 2 N=2 , D = 5 D=5 supergravity and, through the r r -map, correspond to Kähler scalar manifolds in N = 2 N = 2 D = 4 D = 4 supergravity. We offer a simplified exposition of the Vinberg theory in terms of Nil \operatorname {Nil} -algebras (= the subalgebras of upper triangular matrices in Vinberg T T -algebras) and we use it to describe all rational functions on a special Vinberg cone that are G 0 G_0 - or G G’ - invariant, where G 0 G_0 is the unimodular subgroup of the solvable group G G acting simply transitively on the cone, and G G’ is the unipotent radical of G 0 G_0 . The results are used to determine G 0 G_0 - and G G’ -invariant cubic polynomials q q that are admissible (i.e. such that the hypersurface V q = { q = 1 } V \mathscr {V}_q=\{ q=1\}\cap \mathscr {V} has positive definite Hessian form g ( q ) g(q) ) for rank 2 2 and rank 3 3 special Vinberg cones. We get in this way examples of continuous families of non-homogeneous special real manifolds of cohomogeneity less than or equal to two.

Publisher

American Mathematical Society

Reference25 articles.

1. Classification of quaternionic spaces with transitive solvable group of motions;Alekseevskiĭ, D. V.;Izv. Akad. Nauk SSSR Ser. Mat.,1975

2. Classification of 𝑁-(super)-extended Poincaré algebras and bilinear invariants of the spinor representation of 𝑆𝑝𝑖𝑛(𝑝,𝑞);Alekseevsky, D. V.;Comm. Math. Phys.,1997

3. Special Vinberg cones;Alekseevsky, D. V.;Transform. Groups,2021

4. Special Vinberg cones and the entropy of BPS extremal black holes;Alekseevsky, Dmitri V.;J. High Energy Phys.,2021

5. Applied Mathematical Sciences;Amari, Shun-ichi,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3