On eigenvalue gaps of integer matrices

Author:

Abrams Aaron,Landau Zeph,Pommersheim Jamie,Srivastava Nikhil

Abstract

Given an n × n n\times n matrix with integer entries in the range [ h , h ] [-h,h] , how close can two of its distinct eigenvalues be?

The best previously known examples (Lu [Minimum eigenvalue separation, ProQuest LLC, Ann Arbor, MI, 1992. Thesis (Ph.D.)–University of California, Berkeley; Wilkinson [The algebraic eigenvalue problem, Monographs on Numerical Analysis, The Clarendon Press, Oxford University Press, New York, 1988]) have a minimum gap of h O ( n ) h^{-O(n)} . Here we give an explicit construction of matrices with entries in [ 0 , h ] [0,h] with two eigenvalues separated by at most h n 2 / 16 + o ( n 2 ) h^{-n^2/16+o(n^2)} . Up to a constant in the exponent, this agrees with the known lower bound of Ω ( ( 2 n ) n 2 h n 2 ) \Omega ((2\sqrt {n})^{-n^2}h^{-n^2}) (Mahler [Michigan Math. J. 11 (1964), pp. 257–262]). Bounds on the minimum gap are relevant to the worst case analysis of algorithms for diagonalization and computing canonical forms of integer matrices (e.g. Dey et al. [Bit complexity of Jordan normal form and polynomial spectral factorization, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2023, pp. Art. No. 42]).

In addition to our explicit construction, we show there are many matrices with a slightly larger gap of roughly h n 2 / 32 h^{-n^2/32} . We also construct 0-1 matrices which have two eigenvalues separated by at most 2 n 2 / 64 + o ( n 2 ) 2^{-n^2/64+o(n^2)} .

Funder

National Science Foundation

Publisher

American Mathematical Society (AMS)

Reference18 articles.

1. The distribution of close conjugate algebraic numbers;Beresnevich, Victor;Compos. Math.,2010

2. Integral polynomials with small discriminants and resultants;Beresnevich, Victor;Adv. Math.,2016

3. Root separation for irreducible integer polynomials;Bugeaud, Yann;Bull. Lond. Math. Soc.,2011

4. On the distance between roots of integer polynomials;Bugeaud, Yann;Proc. Edinb. Math. Soc. (2),2004

5. Minimal height companion matrices for Euclid polynomials;Chan, E. Y. S.;Math. Comput. Sci.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3