In this paper, we consider a mathematical model motivated by patterned growth of bacteria. The model is a system of differential equations that consists of two sub-systems. One is a system of ordinary differential equations and the other one is a reaction-diffusion system. Pattern formation in this model is caused by an initial instability of the ordinary differential equations. However, nonlinear coupling to the reaction-diffusion system stabilizes the ordinary differential equations resulting in stationary long-time behavior. We establish existence, uniqueness, and characterize long-time behavior of the solutions.