Steinberg quotients, Weyl characters, and Kazhdan-Lusztig polynomials

Author:

Sobaje Paul

Abstract

Let G G be a reductive group over a field of prime characteristic. An indecomposable tilting module for G G whose highest weight lies above the Steinberg weight has a character that is divisible by the Steinberg character. The resulting “Steinberg quotient” carries important information about G G -modules, and in previous work we studied patterns in the weight multiplicities of these characters. In this paper we broaden our scope to include quantum Steinberg quotients, and show how the multiplicities in these characters relate to algebraic Steinberg quotients, Weyl characters, and evaluations of Kazhdan-Lusztig polynomials. We give an explicit algorithm for computing minimal characters that possess a key attribute of Steinberg quotients. We provide computations which show that these minimal characters are not always equal to quantum Steinberg quotients, but are close in several nontrivial cases.

Publisher

American Mathematical Society (AMS)

Reference37 articles.

1. Representations of quantum groups at a 𝑝th root of unity and of semisimple groups in characteristic 𝑝: independence of 𝑝;Andersen, H. H.;Ast\'{e}risque,1994

2. Koszul duality for Kac-Moody groups and characters of tilting modules;Achar, Pramod N.;J. Amer. Math. Soc.,2019

3. Tensor products of quantized tilting modules;Andersen, Henning Haahr;Comm. Math. Phys.,1992

4. Filtrations and tilting modules;Andersen, Henning Haahr;Ann. Sci. \'{E}cole Norm. Sup. (4),1997

5. A sum formula for tilting filtrations;Andersen, Henning Haahr;J. Pure Appl. Algebra,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3