The distribution of sandpile groups of random graphs

Author:

Wood Melanie

Abstract

We determine the distribution of the sandpile group (or Jacobian) of the Erdős-Rényi random graph G ( n , q ) G(n,q) as n n goes to infinity. We prove the distribution converges to a specific distribution conjectured by Clancy, Leake, and Payne. This distribution is related to, but different from, the Cohen-Lenstra distribution. Our proof involves first finding the expected number of surjections from the sandpile group to any finite abelian group (the “moments” of a random variable valued in finite abelian groups). To achieve this, we show a universality result for the moments of cokernels of random symmetric integral matrices that is strong enough to handle dependence in the diagonal entries. The methods developed to prove this result include inverse Littlewood-Offord theorems over finite rings and new techniques for studying homomorphisms of finite abelian groups with not only precise structure but also approximate versions of that structure. We then show these moments determine a unique distribution despite their p k 2 p^{k^2} -size growth. In particular, our theorems imply universality of singularity probability and ranks mod p p for symmetric integral matrices.

Funder

National Science Foundation

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference82 articles.

1. On the sandpile group of the cone of a graph;Alfaro, Carlos A.;Linear Algebra Appl.,2012

2. The lattice of integral flows and the lattice of integral cuts on a finite graph;Bacher, Roland;Bull. Soc. Math. France,1997

3. Circular law;Bai, Z. D.;Ann. Probab.,1997

4. Springer Series in Statistics;Bai, Zhidong,2010

5. The distribution of the rank of random matrices over a finite field.;Balakin, G. V.;Teor. Verojatnost. i Primenen.,1968

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the distribution of eigenvalues in families of Cayley graphs;European Journal of Mathematics;2024-08-30

2. Local limits in p$p$‐adic random matrix theory;Proceedings of the London Mathematical Society;2024-08-21

3. Coboundary expansion for the union of determinantal hypertrees;Random Structures & Algorithms;2024-07-19

4. Publisher Correction to: Finite quotients of 3-manifold groups;Inventiones mathematicae;2024-05-22

5. Finite quotients of 3-manifold groups;Inventiones mathematicae;2024-04-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3