Smoothing of weights in the Bernstein approximation problem

Author:

Bakan Andrew,Prestin Jürgen

Abstract

In 1924 S. Bernstein [Bull. Soc. Math. France 52 (1924), 399-410] asked for conditions on a uniformly bounded R \mathbb {R} Borel function (weight) w : R [ 0 , + ) w: \mathbb {R} \to [0, +\infty ) which imply the denseness of algebraic polynomials P {\mathcal {P} } in the seminormed space C w 0 C^{\,0}_{w} defined as the linear set { f C ( R )   |   w ( x ) f ( x ) 0   as   | x | + } \{f \in C (\mathbb {R}) \ | \ w (x) f (x) \to 0 \ \mbox {as} \ {|x| \to +\infty }\} equipped with the seminorm f w := sup x R w ( x ) | f ( x ) | \|f\|_{w} := \sup \nolimits _{x \in {\mathbb {R}}} w(x)| f( x )| . In 1998 A. Borichev and M. Sodin [J. Anal. Math 76 (1998), 219-264] completely solved this problem for all those weights w w for which P {\mathcal {P} } is dense in C w 0 C^{\,0}_{w} but for which there exists a positive integer n = n ( w ) n=n(w) such that P {\mathcal {P} } is not dense in C ( 1 + x 2 ) n w 0 C^{\,0}_{(1+x^{2})^{n} w} . In the present paper we establish that if P {\mathcal {P} } is dense in C ( 1 + x 2 ) n w 0 C^{\,0}_{(1+x^{2})^{n} w} for all n 0 n \geq 0 , then for arbitrary ε > 0 \varepsilon > 0 there exists a weight W ε C ( R ) W_{\varepsilon } \in C^{\infty } (\mathbb {R}) such that P {\mathcal {P}} is dense in C ( 1 + x 2 ) n W ε 0 C^{\,0}_{(1+x^{2})^{n} W_{\varepsilon }} for every n 0 n \geq 0 and W ε ( x ) w ( x ) + e ε | x | W_{\varepsilon } (x) \geq w (x) + \mathrm {e}^{- \varepsilon |x|} for all x R x\in \mathbb {R} .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference21 articles.

1. National Bureau of Standards Applied Mathematics Series, No. 55,1965

2. Representation of measures with simultaneous polynomial denseness in 𝐿_{𝑝}(𝑅,𝑑𝜇),1≤𝑝<∞;Bakan, Andrew;Ark. Mat.,2005

3. Majorization of regular measures and weights with finite and positive critical exponent;Bakan, Andrew;J. Math. Anal. Appl.,2008

4. La problème de l’approximation des fonctions continues sur tout l’axe réel et l’une de ses applications;Bernstein, S.;Bull. Soc. Math. France,1924

5. The Bernstein problem;de Branges, Louis;Proc. Amer. Math. Soc.,1959

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3