Tropical counting from asymptotic analysis on Maurer-Cartan equations

Author:

Chan Kwokwai,Ma Ziming Nikolas

Abstract

Let X = X Σ X = X_\Sigma be a toric surface and let ( X ˇ , W ) (\check {X}, W) be its Landau-Ginzburg (LG) mirror where W W is the Hori-Vafa potential as shown in their preprint. We apply asymptotic analysis to study the extended deformation theory of the LG model ( X ˇ , W ) (\check {X}, W) , and prove that semi-classical limits of Fourier modes of a specific class of Maurer-Cartan solutions naturally give rise to tropical disks in X X with Maslov index 0 or 2, the latter of which produces a universal unfolding of W W . For X = P 2 X = \mathbb {P}^2 , our construction reproduces Gross’ perturbed potential W n W_n [Adv. Math. 224 (2010), pp. 169–245] which was proven to be the universal unfolding of W W written in canonical coordinates. We also explain how the extended deformation theory can be used to reinterpret the jumping phenomenon of W n W_n across walls of the scattering diagram formed by Maslov index 0 tropical disks originally observed by Gross in the same work (in the case of X = P 2 X = \mathbb {P}^2 ).

Funder

Research Grants Council, University Grants Committee

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference55 articles.

1. Mirror symmetry and 𝑇-duality in the complement of an anticanonical divisor;Auroux, Denis;J. G\"{o}kova Geom. Topol. GGT,2007

2. Special Lagrangian fibrations, wall-crossing, and mirror symmetry;Auroux, Denis,2009

3. S. Barannikov, Semi-infinite Hodge structures and mirror symmetry for projective spaces, preprint (2000), arXiv:math/0010157.

4. Frobenius manifolds and formality of Lie algebras of polyvector fields;Barannikov, Sergey;Internat. Math. Res. Notices,1998

5. Quantum cohomology rings of toric manifolds;Batyrev, Victor V.;Ast\'{e}risque,1993

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Scattering diagrams in mirror symmetry;Bollettino dell'Unione Matematica Italiana;2023-09-17

2. Bulk-Deformed Potentials for Toric Fano Surfaces, Wall-Crossing, and Period;International Mathematics Research Notices;2021-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3