Totally ramified rational maps

Author:

Cui Weiwei,Hu Jun

Abstract

Totally ramified rational maps and regularly ramified rational maps are defined and studied in this paper. We first give a complete classification of regularly ramified rational maps and show that our definition of a regularly ramified rational map is equivalent to a much stronger definition of a map of this kind given by Milnor [Dynamics in one complex variable, Princeton University Press, Princeton, NJ, 2006]. Then we show that (1) any totally ramified rational map of degree d 6 d\leq 6 must be regularly ramified; (2) for any integer d > 6 d>6 , there exists a totally ramified rational map of degree d d which is not regularly ramified. Furthermore, we count totally ramified rational maps up to degree 10 10 . Finally, we present explicit formulas for all totally but not regularly ramified rational maps of degree 7 7 or 8 8 , up to pre- and post-composition by Möbius transformations.

Publisher

American Mathematical Society (AMS)

Subject

Geometry and Topology

Reference13 articles.

1. A negative answer to Nevanlinna’s type question and a parabolic surface with a lot of negative curvature;Benjamini, Itai;Proc. Amer. Math. Soc.,2004

2. Entire functions arising from trees;Cui, Weiwei;Sci. China Math.,2021

3. Graduate Texts in Mathematics;Diestel, Reinhard,2017

4. Graduate Texts in Mathematics;Farkas, Hershel M.,1980

5. London Mathematical Society Student Texts;Girondo, Ernesto,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3