Transcendental splitting fields of division algebras

Author:

Krashen Daniel,Lieblich Max

Abstract

We examine when division algebras can share common splitting fields of certain types. In particular, we show that one can find fields for which one has infinitely many Brauer classes of the same index and period at least 3, all nonisomorphic and having the same set of finite splitting fields as well as the same splitting fields of transcendence degree 1 1 and genus at most 1 1 . On the other hand, we show that when one fixes any division algebra over a field, then any division algebras sharing the same splitting fields of transcendence degree at most 3 must generate the same cyclic subgroup of the Brauer group. In particular, there are only a finite number of such division algebras. We also show that a similar finiteness statement holds for splitting fields of transcendence degree at most 2 2 .

Publisher

American Mathematical Society

Reference19 articles.

1. Generic splitting fields of central simple algebras;Amitsur, S. A.;Ann. of Math. (2),1955

2. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)];Bosch, Siegfried,1990

3. On the genus of a division algebra;Chernousov, Vladimir I.;C. R. Math. Acad. Sci. Paris,2012

4. The genus of a division algebra and the unramified Brauer group;Chernousov, Vladimir I.;Bull. Math. Sci.,2013

5. Division algebras with the same maximal subfields;Chernousov, V. I.;Uspekhi Mat. Nauk,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3