Affine Hecke algebras and quantum symmetric pairs

Author:

Fan Zhaobing,Lai Chun-Ju,Li Yiqiang,Luo Li,Wang Weiqiang

Abstract

We introduce an affine Schur algebra via the affine Hecke algebra associated to Weyl group of affine type C. We establish multiplication formulas on the affine Hecke algebra and affine Schur algebra. Then we construct monomial bases and canonical bases for the affine Schur algebra. The multiplication formula allows us to establish a stabilization property of the family of affine Schur algebras that leads to the modified version of an algebra K n c {\mathbf K}^{\mathfrak c}_n . We show that K n c {\mathbf K}^{\mathfrak c}_n is a coideal subalgebra of quantum affine algebra U ( g l ^ n ) {\mathbf {U}}(\widehat {\mathfrak {gl}}_n) , and ( U ( g l ^ n ) , K n c ) \big ({\mathbf {U}}(\widehat { \mathfrak {gl}}_n), {\mathbf K}^{\mathfrak c}_n) forms a quantum symmetric pair. The modified coideal subalgebra is shown to admit monomial and stably canonical bases. We also formulate several variants of the affine Schur algebra and the (modified) coideal subalgebra above, as well as their monomial and canonical bases. This work provides a new and algebraic approach which complements and sheds new light on our previous geometric approach on the subject. In the appendix by four of the authors, new length formulas for the Weyl groups of affine classical types are obtained in a symmetrized fashion.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference35 articles.

1. Affine permutations of type 𝐴;Björner, Anders;Electron. J. Combin.,1996

2. Graduate Texts in Mathematics;Björner, Anders,2005

3. Cells for two Coxeter groups;Bédard, Robert;Comm. Algebra,1986

4. A geometric setting for the quantum deformation of 𝐺𝐿_{𝑛};Beilinson, A. A.;Duke Math. J.,1990

5. Geometric Schur duality of classical type;Bao, Huanchen;Transform. Groups,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3