Lech’s inequality for the Buchsbaum-Rim multiplicity and mixed multiplicity

Author:

Nguyen Vinh,Walters Kelsey

Abstract

We generalize an improved Lech bound, due to Huneke, Smirnov, and Validashti, from the Hilbert-Samuel multiplicity to the Buchsbaum-Rim multiplicity and mixed multiplicity. We reduce the problem to the graded case and then to the polynomial ring case. There we use complete reductions, studied by Rees, to prove sharper bounds for the mixed multiplicity in low dimensions before proving the general case.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference12 articles.

1. The integral closure of modules, Buchsbaum-Rim multiplicities and Newton polyhedra;Bivià-Ausina, Carles;J. London Math. Soc. (2),2004

2. A generalized Koszul complex. II. Depth and multiplicity;Buchsbaum, David A.;Trans. Amer. Math. Soc.,1964

3. Graduate Texts in Mathematics;Eisenbud, David,1995

4. Specialization of integral dependence for modules;Gaffney, Terence;Invent. Math.,1999

5. A generalization of an inequality of Lech relating multiplicity and colength*;Huneke, Craig;Comm. Algebra,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3