Semi-waves with Λ-shaped free boundary for nonlinear Stefan problems: Existence

Author:

Du Yihong,Gui Changfeng,Wang Kelei,Zhou Maolin

Abstract

We show that for a monostable, bistable or combustion type of nonlinear function f ( u ) f(u) , the Stefan problem \[ { a m p ; u t Δ u = f ( u ) , u > 0 a m p ; a m p ; for     x Ω ( t ) R n + 1 , a m p ; u = 0   and   u t = μ | x u | 2 a m p ; a m p ; for     x Ω ( t ) , \left \{ \begin {aligned} &u_t-\Delta u=f(u),\; u>0 & &\text {for}~~x\in \Omega (t)\subset \mathbb {R}^{n+1},\\ & u=0~\text {and}~u_t=\mu |\nabla _x u|^2 && \text {for}~~x\in \partial \Omega (t), \end {aligned} \right . \] has a traveling wave solution whose free boundary is Λ \Lambda -shaped, and whose speed is κ \kappa , where κ \kappa can be any given positive number satisfying κ > κ \kappa >\kappa _* , and κ \kappa _* is the unique speed for which the above Stefan problem has a planar traveling wave solution. To distinguish it from the usual traveling wave solutions, we call it a semi-wave solution. In particular, if α ( 0 , π / 2 ) \alpha \in (0, \pi /2) is determined by sin α = κ / κ \sin \alpha =\kappa _*/\kappa , then for any finite set of unit vectors { ν i : 1 i m } R n \{\nu _i: 1\leq i\leq m\}\subset \mathbb R^n , there is a Λ \Lambda -shaped semi-wave with traveling speed κ \kappa , with traveling direction e n + 1 = ( 0 , . . . , 0 , 1 ) R n + 1 -e_{n+1}=(0,...,0, -1)\in \mathbb {R}^{n+1} , and with free boundary given by a hypersurface in R n + 1 \mathbb {R}^{n+1} of the form \[ x n + 1 = ϕ ( x 1 , . . . , x n ) = Φ ( x 1 , . . . , x n ) ) + O ( 1 )  as  | ( x 1 , . . . , x n ) | , x_{n+1}=\phi (x_1,..., x_n)=\Phi ^*(x_1,...,x_n))+O(1)\text { as }|(x_1,..., x_n)|\to \infty , \] where \[ Φ ( x 1 , . . . , x n ) [ max 1 i m ν i ( x 1 , . . . , x n ) ] cot α \Phi ^*(x_1,..., x_n)\colonequals - \left [\max _{1\leq i\leq m} \nu _i\cdot (x_1,..., x_n)\right ]\cot \alpha \] is a solution of the eikonal equation | Φ | = cot α |\nabla \Phi |=\cot \alpha on R n \mathbb R^n .

Funder

Australian Research Council

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference26 articles.

1. The regularity of free boundaries in higher dimensions;Caffarelli, Luis A.;Acta Math.,1977

2. Traveling waves with paraboloid like interfaces for balanced bistable dynamics;Chen, Xinfu;Ann. Inst. H. Poincar\'{e} Anal. Non Lin\'{e}aire,2007

3. W. Ding, Y. Du and Z.M. Guo, The Stefan problem for the Fisher-KPP equation with unbounded initial range, Calc. Var. Partial Differential Equations, to appear. (preprint: arXiv2003.10100)

4. The Stefan problem for the Fisher-KPP equation;Du, Yihong;J. Differential Equations,2012

5. Y. Du and Z. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal. 42 (2010), 377–405.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Propagation and reaction–diffusion models with free boundaries;Bulletin of Mathematical Sciences;2022-01-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3