An extension of the Kantorovich method

Author:

Kerr Arnold D.

Abstract

An extension of the Kantorovich method is discussed. The suggested method is demonstrated on the torsion problem of a beam of rectangular cross section. It is found that even when the solution is restricted to a one-term approximation, the method generates very good results also for stresses which are obtained as derivatives of the solution. It is shown that the final form of the generated solution is unique and that the convergence of the iterative process is very rapid. The obtained results indicate that the proposed method is a convenient tool to generate close approximate solutions, thus eliminating the arbitrariness in the choice of coordinate functions, which is a serious shortcoming inherent in the Ritz and Galerkin methods.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics

Reference4 articles.

1. L. V. Kantorovich, A direct method of solving the problem of the minimum of a double integral(in Russian) Izvestia AN, USSR, 1933, p. 647–652

2. T. E. Schunck, Zur Knickfestigkeit schwach gekrümmter zylindrischer Schalen, Ingenieur Archiv, IV, 394–414 (1933)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3