Taylor’s theorem for functionals on BMO with application to BMO local minimizers

Author:

Spector Daniel,Spector Scott

Abstract

In this note two results are established for energy functionals that are given by the integral of W ( x , u ( x ) ) W({\mathbf x},\nabla {\mathbf u}({\mathbf x})) over Ω R n \Omega \subset {\mathbb R}^n with u B M O ( Ω ; R N × n ) \nabla {\mathbf u}\in \mathrm {BMO}(\Omega ;{\mathbb R}^{N\times n}) , the space of functions of Bounded Mean Oscillation of John and Nirenberg. A version of Taylor’s theorem is first shown to be valid provided the integrand W W has polynomial growth. This result is then used to demonstrate that every Lipschitz-continuous solution of the corresponding Euler-Lagrange equations at which the second variation of the energy is uniformly positive is a strict local minimizer of the energy in W 1 , B M O ( Ω ; R N ) W^{1,\mathrm {BMO}}(\Omega ;{\mathbb R}^N) , the subspace of the Sobolev space W 1 , 1 ( Ω ; R N ) W^{1,1}(\Omega ;{\mathbb R}^N) for which the weak derivative u B M O ( Ω ; R N × n ) \nabla {\mathbf u}\in \mathrm {BMO}(\Omega ;{\mathbb R}^{N\times n}) .

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics

Reference23 articles.

1. Quasiconvexity at the boundary, positivity of the second variation and elastic stability;Ball, J. M.;Arch. Rational Mech. Anal.,1984

2. Degree theory and BMO. I. Compact manifolds without boundaries;Brezis, H.;Selecta Math. (N.S.),1995

3. Degree theory and BMO. II. Compact manifolds with boundaries;Brezis, Haïm;Selecta Math. (N.S.),1996

4. Boundary regularity and sufficient conditions for strong local minimizers;Campos Cordero, Judith;J. Funct. Anal.,2017

5. A decomposition technique for John domains;Diening, Lars;Ann. Acad. Sci. Fenn. Math.,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3