The classical Artin approximation theorems

Author:

Hauser Herwig

Abstract

The various Artin approximation theorems assert the existence of power series solutions of a certain quality Q Q (i.e., formal, analytic, algebraic) of systems of equations of the same quality Q Q , assuming the existence of power series solutions of a weaker quality Q > Q Q’ > Q (i.e., approximated, formal). The results are frequently used in commutative algebra and algebraic geometry. We present a systematic argument which proves, with minor modifications, all theorems simultaneously. More involved results, such as, e.g., Popescu’s nested approximation theorem for algebraic equations or statements about the Artin function, will only be mentioned but not proven. We complement the article with a brief account of the theory of algebraic power series, two applications of approximation to singularities, and a differential-geometric interpretation of Artin’s proof.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference98 articles.

1. [ACH] M. E. Alonso, F. J. Castro-Jiménez, H. Hauser, Encoding algebraic power series. Found. Comp. Math. 2017. To appear.

2. [ACHK] M. E. Alonso, F. J. Castro-Jiménez, H. Hauser, C. Koutschan, Echelons of power series and Gabrielov’s counterexample to nested linear Artin approximation. Manuscript 2017, 8 pp.

3. Diagonalization and rationalization of algebraic Laurent series;Adamczewski, Boris;Ann. Sci. \'{E}c. Norm. Sup\'{e}r. (4),2013

4. On periodic points;Artin, M.;Ann. of Math. (2),1965

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Structure of Regular Morphisms;Frontiers in Mathematics;2023

2. IMMEDIATE EXTENSIONS OF VALUATION RINGS AND;Mathematical Reports;2023

3. Symmetry & critical points for a model shallow neural network;Physica D: Nonlinear Phenomena;2021-12

4. Counting monster potentials;Journal of High Energy Physics;2021-02

5. Diagonal Representation of Algebraic Power Series: A Glimpse Behind the Scenes;Transcendence in Algebra, Combinatorics, Geometry and Number Theory;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3