Stability and measurability of the modified lower dimension

Author:

Balka Richárd,Elekes Márton,Kiss Viktor

Abstract

The lower dimension dim L \dim _L is the dual concept of the Assouad dimension. As it fails to be monotonic, Fraser and Yu [Adv. Math. 329 (2018), pp. 273–328] introduced the modified lower dimension d i m {ML} dim_\textit {{ML}} by making the lower dimension monotonic with the simple formula d i m {ML} X = sup { dim L E : E X } dim_\textit {{ML}}X=\sup \{\dim _L E: E\subset X\} .

As our first result we prove that the modified lower dimension is finitely stable in any metric space, answering a question of Fraser and Yu.

We prove a new, simple characterization for the modified lower dimension. For a metric space X X let K ( X ) \mathcal {K}(X) denote the metric space of the non-empty compact subsets of X X endowed with the Hausdorff metric. As an application of our characterization, we show that the map d i m {ML} : K ( X ) [ 0 , ] dim_\textit {{ML}}\colon \mathcal {K}(X)\to [0,\infty ] is Borel measurable. More precisely, it is of Baire class 2 2 , but in general not of Baire class 1 1 . This answers another question of Fraser and Yu.

Finally, we prove that the modified lower dimension is not Borel measurable defined on the closed sets of 1 \ell ^1 endowed with the Effros Borel structure.

Funder

Nemzeti Kutatási Fejlesztési és Innovációs Hivatal

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference11 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3